How to pass tool outputs to chat models
This guide assumes familiarity with the following concepts:
Some models are capable of tool calling - generating arguments that conform to a specific user-provided schema. This guide will demonstrate how to use those tool cals to actually call a function and properly pass the results back to the model.
First, let's define our tools and our model:
pip install -qU langchain-openai
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
from langchain_core.tools import tool
@tool
def add(a: int, b: int) -> int:
"""Adds a and b."""
return a + b
@tool
def multiply(a: int, b: int) -> int:
"""Multiplies a and b."""
return a * b
tools = [add, multiply]
llm_with_tools = llm.bind_tools(tools)
Now, let's get the model to call a tool. We'll add it to a list of messages that we'll treat as conversation history:
from langchain_core.messages import HumanMessage
query = "What is 3 * 12? Also, what is 11 + 49?"
messages = [HumanMessage(query)]
ai_msg = llm_with_tools.invoke(messages)
print(ai_msg.tool_calls)
messages.append(ai_msg)
[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_GPGPE943GORirhIAYnWv00rK', 'type': 'tool_call'}, {'name': 'add', 'args': {'a': 11, 'b': 49}, 'id': 'call_dm8o64ZrY3WFZHAvCh1bEJ6i', 'type': 'tool_call'}]
Next let's invoke the tool functions using the args the model populated!
Conveniently, if we invoke a LangChain Tool
with a ToolCall
, we'll automatically get back a ToolMessage
that can be fed back to the model:
This functionality was added in langchain-core == 0.2.19
. Please make sure your package is up to date.
If you are on earlier versions of langchain-core
, you will need to extract the args
field from the tool and construct a ToolMessage
manually.
for tool_call in ai_msg.tool_calls:
selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()]
tool_msg = selected_tool.invoke(tool_call)
messages.append(tool_msg)
messages
[HumanMessage(content='What is 3 * 12? Also, what is 11 + 49?'),
AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_loT2pliJwJe3p7nkgXYF48A1', 'function': {'arguments': '{"a": 3, "b": 12}', 'name': 'multiply'}, 'type': 'function'}, {'id': 'call_bG9tYZCXOeYDZf3W46TceoV4', 'function': {'arguments': '{"a": 11, "b": 49}', 'name': 'add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 50, 'prompt_tokens': 87, 'total_tokens': 137}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_661538dc1f', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-e3db3c46-bf9e-478e-abc1-dc9a264f4afe-0', tool_calls=[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_loT2pliJwJe3p7nkgXYF48A1', 'type': 'tool_call'}, {'name': 'add', 'args': {'a': 11, 'b': 49}, 'id': 'call_bG9tYZCXOeYDZf3W46TceoV4', 'type': 'tool_call'}], usage_metadata={'input_tokens': 87, 'output_tokens': 50, 'total_tokens': 137}),
ToolMessage(content='36', name='multiply', tool_call_id='call_loT2pliJwJe3p7nkgXYF48A1'),
ToolMessage(content='60', name='add', tool_call_id='call_bG9tYZCXOeYDZf3W46TceoV4')]
And finally, we'll invoke the model with the tool results. The model will use this information to generate a final answer to our original query:
llm_with_tools.invoke(messages)
AIMessage(content='The result of \\(3 \\times 12\\) is 36, and the result of \\(11 + 49\\) is 60.', response_metadata={'token_usage': {'completion_tokens': 31, 'prompt_tokens': 153, 'total_tokens': 184}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_661538dc1f', 'finish_reason': 'stop', 'logprobs': None}, id='run-87d1ef0a-1223-4bb3-9310-7b591789323d-0', usage_metadata={'input_tokens': 153, 'output_tokens': 31, 'total_tokens': 184})
Note that each ToolMessage
must include a tool_call_id
that matches an id
in the original tool calls that the model generates. This helps the model match tool responses with tool calls.
Tool calling agents, like those in LangGraph, use this basic flow to answer queries and solve tasks.
Relatedβ
- LangGraph quickstart
- Few shot prompting with tools
- Stream tool calls
- Pass runtime values to tools
- Getting structured outputs from models